Аннотация:
В работе представлен обзор результатов, посвященных описанию семейств операторов, подчиняющихся некоторым индуктивным тождествам (например правилу\linebreak Лейбница — случай дифференцирований, дифференцирования Фокса, а также $(\sigma,\tau)$-дифференцирований) как характеров на подходящем группоиде. В первую очередь дается реализация данной конструкции для дифференцирований в групповых алгебрах и дифференцирований Фокса, как характеров на группоиде действия. Также демонстрируется, как данная конструкция реализуется для дифференцирований на алгебрах, порожденных мальцевскими полугруппами, для случая дифференцирований со значениями в конечных кольцах, а также для $(\sigma,\tau)-$дифференцирований.