Аннотация:
Описан способ получения кэлеровых и сублагранжевых подмногообразий в многообразиях произвольной размерности. Для этого используется понятие субтвисторной и субкэлеровой структуры, которое обобщает классические твисторные и кэлеровы структуры на вещественные многообразия любой размерности с вырожденной фундаментальной 2-формой. Приведены явные примеры таких подмногообразий, показано, как субтвисторная структура на многообразии позволяет локально разложить его в прямое произведение подмногообразий.