Аннотация:
Доказана возможность применения метода пограничных функций для построения равномерного асимптотического разложения решения задачи Дирихле для бисингулярно возмущенного эллиптического уравнения, когда предельное уравнение является дифференциальным уравнением первого порядка с особыми точками, причем в этих точках условие теоремы А. Н. Тихонова не выполняется. Получена оценка остаточного члена, т.е. обосновано формальное асимптотическое разложение решения исследуемой задачи.
Ключевые слова:асимптотика, решение, бисингулярное возмущение, уравнение эллиптического типа, особая точка, задача Дирихле, обобщенный метод пограничных функций, пограничные функции, малый параметр.