Аннотация:
Данная публикация продолжает серию работ автора о моделировании деформированного лепестка осесимметричного параболического рефлектора. Схема моделирования формы деформированного лепестка сетеполотна осесимметричного рефлектора, предложенная В.М. Гряником и В.И. Ломаном, разработана для изотропного упругого материала, прикрепляемого к параболическим жестким ребрам, и не видно способов адаптировать её для ортотропного сетеполотна с иными способами закрепления. Автором в публикациях 2016 года предложена методика моделирования формы ортотропного упругого материала, основанная на использовании поверхности, для которой отношение главных кривизн есть величина постоянная (выражающаяся через отношение коэффициентов растяжения материала в двух ортогональных направлениях. Такая поверхность названа псевдоминимальной. В указанных публикациях методика адаптирована под конкретную ситуацию, описанную Гряником и Ломаном (лепесток сетеполотна осесимметричного рефлектора). Автором решены вопросы и более общего характера. Доказана теорема существования (широта класса псевдоминимальных поверхностей оказалась такая же, как и для минимальных поверхностей — две функции одного аргумента, то есть — в принципе — псевдоминимальная поверхность указанного веса определяется граничной линией). Данные о широте класса допускают иное истолкование: возможность (теоретическая!) построить составную псевдоминимальную поверхность, присоединяя к одной плоской линии семейство других плоских линий. Пример построения такой поверхности (она задается вектор-функцией) строится в данной статье. Для этой же поверхности строится явное задание. Это открывает возможности для моделирования поверхности ортотропного материала при выборе иных способов закрепления.
Ключевые слова:гладкая поверхность, главные кривизны, ортотропия, псевдосредняя кривизна, задание поверхности посредством семейства образующих кривых, явное задание поверхности.