Аннотация:
Предлагается разновидность коллокационного метода граничных элементов с кубической скоростью сходимости, позволяющего получить решения начально-краевых задач с граничными условиями первого, второго и третьего рода для уравнения $\partial_tu=a^2\Delta_2u-pu$ с постоянными $a, p>0$ в плоской пространственной области при нулевом начальном условии. Для того чтобы иметь возможность доказать сходимость метода с указанной скоростью, аппроксимация интегралов на сингулярных и околосингулярных граничных элементах осуществляется на основе аналитического интегрирования по расстоянию между точками границы. Такая аппроксимация практически и теоретически осуществима для любой аналитически заданной границы класса $C^5$.