RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Томского государственного университета. Математика и механика // Архив

Вестн. Томск. гос. ун-та. Матем. и мех., 2021, номер 73, страницы 111–120 (Mi vtgu879)

МЕХАНИКА

On the numerical solution to a non-classical problem of bending and stability for an orthotropic beam of variable thickness

[О численном решении неклассической задачи изгиба и устойчивости ортотропной балки переменной толщины]

S. P. Stepanyan

Yerevan State University

Аннотация: На основе уточненной теории ортотропных пластин переменной толщины, построена математическая модель задачи изгиба и устойчивости упруго защемленной балки. Для решения задачи в случае одновременного действия собственного веса и сжимающих осевых сил получена система дифференциальных уравнений с переменными коэффициентами. Учитываются также влияния поперечного сдвига и уменьшения сжимающей силы опоры. Переходя к безразмерным величинам, методом коллокаций решается конкретная задача для балки линейно изменяющейся толщины. Неизвестные функции аппроксимируются полиномами. В численных расчетах исследуется устойчивость решений в зависимости от степени полиномов. Обсуждается устойчивость балки, величина критической силы определяется изменением значения осевой сжимающей силы до тех пор, пока величина прогиба не изменит знак. Результаты представлены как в табличной, так и в графической формах. По полученным результатам сделаны соответствующие выводы. В частности выяснилось, что: а) максимальная точка изгиба балки находится на ее тонкой стороне. Увеличение сжимающей силы приводит к увеличению прогиба; б) учет поперечного сдвига не оказывает значительного влияния на изменение поведения поперечной силы и изгибающего момента. Полученные результаты будут полезны инженерам и строителям.

Ключевые слова: упруго-защемленная опора, изгиб, поперечный сдвиг, устойчивость.

УДК: 539.3

Статья поступила: 09.10.2020

Язык публикации: английский

DOI: 10.17223/19988621/73/10



Реферативные базы данных:


© МИАН, 2024