RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Томского государственного университета. Математика и механика // Архив

Вестн. Томск. гос. ун-та. Матем. и мех., 2021, номер 74, страницы 43–54 (Mi vtgu886)

Эта публикация цитируется в 1 статье

МАТЕМАТИКА

Исследование приближенного решения некоторых классов поверхностных интегральных уравнений первого рода

Э. Г. Халилов

Department of General and Applied Mathematics of the Azerbaijan State Oil and Industry University, Baku, Azerbaijan

Аннотация: Построена последовательность, сходящая к точному решению гиперсингулярного интегрального уравнения первого рода внешней краевой задачи Неймана для уравнения Гельмгольца, которое является граничным значением решения внешней краевой задачи Неймана на границе области. Кроме того, построена последовательность, сходящая к точному решению слабосингулярного интегрального уравнения первого рода внешней краевой задачи Дирихле для уравнения Гельмгольца, которое является граничным значением нормальной производной решения внешней краевой задачи Дирихле на границе области.

Ключевые слова: интегральное уравнение первого рода, слабосингулярные интегральные уравнения, гиперсингулярные интегральные уравнения, уравнение Гельмгольца, внешняя краевая задача Неймана, внешняя краевая задача Дирихле.

УДК: 517.2; 519.64

MSC: 45E05; 31B10

Статья поступила: 08.07.2021

DOI: 10.17223/19988621/74/5



Реферативные базы данных:


© МИАН, 2025