Аннотация:
Эта статья посвящена проблеме оценки функции распределения и ее квантилей в зависимости доза-эффект с непараметрической отрицательной $\lambda$-биномиальной регрессией. Здесь предложены ядерные оценки функции распределения, ядро которых взвешивается отрицательной $\lambda$-биномиальной случайной величиной при каждой ковариате. Наши оценки состоятельны, т.е. сходятся к своим оптимальным значениям когда число наблюдений $n$ возрастает до бесконечности. Показано, что эти оценки имеют меньшую асимптотическую дисперсию по сравнению, в частности, с оценками типа Надарая-Ватсона и других оценок. Представлены непараметрические оценки квантилей, полученные путем инвертирования ядерной оценки функции распределения. Асимптотическая нормальность этих оценок с поправкой на смещение сохраняется при некоторых условиях регулярности. В первой части анализируются соотношения между моментами отрицательного $\lambda$-биномиального распределения. Получена новая характеризация распределения Пуассона.