Устойчивость и сходимость разностных схем, аппроксимирующих первую краевую задачу для интегро-дифференциальных параболических уравнений в многомерной области
Аннотация:
Исследованы интегро-дифференциальные параболические уравнения в многомерной области с граничными условиями первого рода. Для каждой задачи построена разностная схема с порядком аппроксимации $O(|h|^2+\tau^{m_\sigma})$, где $m_\sigma = 1$, если $\sigma\neq0.5$ и $m_\sigma = 2$, если $\sigma=0.5$, методом энергетических неравенств для решения разностной задачи получена априорная оценка. Из полученных оценок следуют единственность и устойчивость решения по правой части и начальным данным, а также сходимость решения разностной задачи к решению соответствующей исходной дифференциальной задачи со скоростью $O(|h|^2+\tau^2)$ при $\sigma = 0.5$. Проведены численные расчеты тестовых примеров.
Ключевые слова:многомерная задача, первая краевая задача, параболическое уравнение, интегральное уравнение, разностная схема, априорная оценка, устойчивость и сходимость разностных схем.