Аннотация:
Рассматривается линейное нагруженное интегро-дифференциальное уравнение с гиперболическим оператором
$$
\frac\partial{\partial x}\left(u_{xx}-u_{yy}-\lambda u\right)=\mu\sum_{i=1}^na_i(x)D_{0x}^{\alpha _i}u_y(x,0),
$$
и нагруженное интегро-дифференциальное уравнение со смешанным оператором
$$
\frac\partial{\partial x}\left(u_{xx}-\frac{1-\operatorname{sgn}y}2u_{yy}-\frac{1+\operatorname{sgn}y}2u_y-\lambda u\right)=\mu\sum_{i=1}^na_i(x)D_{0x}^{\alpha_i}u_y(x,0),
$$
где $D_{0x}^{\alpha_i}$ – интегро-дифференциальный оператор (в смысле Римана–Лиувилля), $a_i(x)$ – коэффициенты, $\lambda,\mu$ – действительные постоянные, причем $\lambda>0$. Данная работа посвящена постановке и исследованию однозначной разрешимости краевых задач (типа задачи Дарбу, задачи Трикоми) для нагруженного интегро-дифференциального уравнения третьего порядка с гиперболическим и параболо-гиперболическим оператором. Существование и единственность решения краевой задачи доказана методом интегральных уравнений. Задачи эквивалентным образом сводятся к интегральным уравнениям Вольтерра со сдвигом. При достаточных условиях на заданные функции и коэффициенты доказывается однозначная разрешимость полученных интегральных уравнений.
Ключевые слова:нагруженное уравнение, уравнения смешанного типа, интегро-дифференциальное уравнение, интегральное уравнение со сдвигом, функция Бесселя.