RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки // Архив

Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 2012, выпуск 3, страницы 25–47 (Mi vuu334)

Эта публикация цитируется в 5 статьях

МАТЕМАТИКА

О спектре периодического оператора Шредингера с потенциалом из пространства Морри

Л. И. Данилов

Физико-технический институт УрО РАН, Россия, г. Ижевск

Аннотация: Рассматривается периодический оператор Шредингера $\widehat H_A+V$ в $\mathbb R^n$, $n\geqslant3$. На векторный потенциал $A$ накладываются ограничения, которые, в частности, выполнены, если потенциал $A$ принадлежит классу Соболева $H^q_\mathrm{loc}(\mathbb R^n;\mathbb R^n)$, $q>\frac{n-1}2$, а также в случае, когда $\sum\|A_N\|_{\mathbb C^n}<+\infty$, где $A_N$ – коэффициенты Фурье потенциала $A$. Доказана абсолютная непрерывность спектра периодического оператора Шредингера $\widehat H_A+V$ для скалярных потенциалов $V$ из пространства Морри $\mathfrak L^{2,p}(\mathbb R^n)$, $p\in(\frac{n-1}2,\frac n2]$, для которых
$$ \overline{\lim_{r\to+0}}\sup_{x\in\mathbb R^n}r^2\biggl(\frac1{v(B_r)}\int_{B_r(x)}|V(y)|^p\,dy\biggr)^{1/p}\leqslant\varepsilon_0, $$
где число $\varepsilon_0=\varepsilon_0(n,p;A)>0$ зависит от векторного потенциала $A$, $B_r(x)$ – замкнутый шар радиуса $r>0$ с центром в точке $x\in\mathbb R^n$, $v(B_r)$ – $n$-мерный объем шара $B_r=B_r(0)$. Пусть $K$ – элементарная ячейка решетки периодов потенциалов $A$ и $V,$ $K^*$ – элементарная ячейка обратной решетки. Оператор $\widehat H_A+V$ унитарно эквивалентен прямому интегралу операторов $\widehat H_A(k)+V$, $k\in2\pi K^*$, действующих в $L^2(K)$. Последние операторы рассматриваются также при комплексных векторах $k+ik'\in\mathbb C^n$. При доказательстве абсолютной непрерывности спектра оператора $\widehat H_A+V$ используется метод Томаса. Доказательство опирается на следующую оценку (см. теорему 4 и замечание после нее):
\begin{gather*} \|\,|\widehat H_0(k+ik')|^{-1/2}\bigl(\widehat H_A(k+ik')+V-\lambda\bigr)\varphi\|_{L^2(K)}\geqslant\widetilde C_1\|\,|\widehat H_0(k+ik')|^{1/2}\varphi\|_{L^2(K)},\\ \varphi\in D(\widehat H_A(k+ik')+V), \end{gather*}
которая справедлива при определенным образом выбираемых комплексных векторах $k+ik'\in\mathbb C^n$ (зависящих от $A,V$ и числа $\lambda\in\mathbb R$) с достаточно большой мнимой частью $k'$, где $\widetilde C_1=\widetilde C_1(n;A)>0$ и $\widehat H_0(k+ik')$ – оператор $\widehat H_A(k+ik')$ при $A\equiv0$.

Ключевые слова: оператор Шредингера, абсолютная непрерывность спектра, периодический потенциал, пространство Морри.

УДК: 517.958+517.984.5

MSC: 35P05

Поступила в редакцию: 23.12.2011



© МИАН, 2024