RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки // Архив

Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 2014, выпуск 2, страницы 86–99 (Mi vuu429)

Эта публикация цитируется в 2 статьях

МАТЕМАТИКА

Движение кругового цилиндра, взаимодействующего с вихревой парой, в поле силы тяжести в идеальной жидкости

С. В. Соколов

Институт компьютерных исследований, Удмуртский государственный университет, 426034, Россия, г. Ижевск, ул. Университетская, 1

Аннотация: В работе рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с $N$ точечными вихрями, в идеальной жидкости. В общем случае циркуляция жидкости вокруг цилиндра предполагается отличной от нуля. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы — горизонтальная и вертикальная компоненты импульса, — последний из которых, очевидно, неавтономный. Основное внимание сконцентрировано на исследовании конфигурации, аналогичной задаче Фёппля: цилиндр движется в поле тяжести в сопровождении вихревой пары ($N=2$). В этом случае циркуляция вокруг цилиндра равна нулю, а уравнения движения рассматриваются на некотором инвариантном многообразии. Показано, что, в отличие от конфигурации Фёппля, в поле силы тяжести относительное равновесие вихрей невозможно. Рассмотрена ограниченная задача: цилиндр предполагается достаточно тяжелым, вследствие чего вихри не оказывают влияния на его падение. Как полная, так и ограниченная задача исследована численно, в результате отмечено качественное сходство поведения решений: в большинстве случаев взаимодействие вихревой пары и цилиндра носит характер рассеяния.

Ключевые слова: точечные вихри, вихревая пара, гамильтоновы системы, редукция.

УДК: 512.77, 517.912

MSC: 70Hxx, 70G65

Поступила в редакцию: 19.05.2014



© МИАН, 2024