Аннотация:
Проведено математическое моделирование конвективно-кондуктивно-радиационного теплообмена в кубической полости, заполненной прозрачной для излучения средой. Анализируемый объект представлял собой замкнутый объем с теплопроводными стенками конечной толщины, имеющими диффузно-серые внутренние поверхности. Внешние поверхности двух вертикальных стенок являлись изотермическими, а остальные внешние грани области решения — адиабатическими. Краевая задача сформулирована в безразмерных переменных «векторный потенциал–вектор завихренности–температура» в приближении Буссинеска и с учетом диатермичности сплошной среды. Анализ радиационного теплообмена проведен с использованием метода сальдо в варианте Поляка. Сформулированная нестационарная краевая задача реализована численно методом конечных разностей в широком диапазоне изменения числа Рэлея, коэффициента теплопроводности материала ограждающих твердых стенок и коэффициента излучения. Получены корреляционные соотношения для средних конвективного и радиационного чисел Нуссельта на характерной внутренней границе раздела сред. Проведено сравнение полученных результатов с данными двумерной модели. Установлено, что при рассмотрении трехмерной задачи можно оценить формирование интенсивных поперечных перетоков среды со стороны двух вертикальных поверхностей, которые отсутствуют в двумерной постановке. Показано, что решение задач конвективно-радиационного теплопереноса в сопряженной постановке приводит к существенным изменениям в распределениях локальных и интегральных характеристик по сравнению с несопряженной моделью, что в первую очередь связано с более корректным описанием механизма теплового излучения в диатермичных средах за счет учета теплопроводности ограждающих твердых стенок.