Аннотация:
Рассматривается биркгофова интерполяция функции двух переменных многочленами степени $2k+1$ по совокупности двух переменных на треугольнике. Подобные оценки автоматически переносятся на оценки погрешности метода конечных элементов, с которым тесно связаны. Оценки погрешности аппроксимации для производных функции в предложенных конечных элементах зависят только от диаметра разбиения и не зависят от углов триангуляции. Показана неулучшаемость полученных оценок погрешности аппроксимации функции и ее частных производных. Неулучшаемость понимается в том смысле, что существует функция из заданного класса и существуют абсолютные положительные константы, не зависящие от триангуляции, такие, что для любого невырожденного треугольника справедливы оценки снизу. В данной работе для рассматриваемых интерполяционных условий предлагается набор конкретных функций, позволяющих получить соответствующие оценки погрешности для определенных частных производных.
Ключевые слова:погрешность интерполяции, кусочно-полиномиальная функция, триангуляция, метод конечных элементов.