RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки // Архив

Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 2016, том 26, выпуск 2, страницы 258–270 (Mi vuu537)

Эта публикация цитируется в 6 статьях

МАТЕМАТИКА

Алгоритмы оптимального покрытия множеств на плоскости $\mathbb{R}^2$

В. Н. Ушаков, П. Д. Лебедев

Институт математики и механики им. Н. Н. Красовского УрО РАН, 620990, Россия, г. Екатеринбург, ул. С. Ковалевской, 16

Аннотация: Изучается задача об оптимальном покрытии выпуклых множеств на плоскости объединением заданного числа $n$ кругов одинакового радиуса. Критерий оптимальности заключается в минимизации радиуса кругов, что позволяет свести задачу оптимизации к задаче построения наилучшей чебышёвской $n$-сети выпуклого множества. В работе предложены и обоснованы численные методы, базирующиеся на разбиении множества на области Дирихле и отыскании так называемых характерных точек. Одним из ключевых элементов методов является построение чебышёвского центра компактного выпуклого множества. Представлены стохастические алгоритмы генерации начального положения точек $n$-сети. Проведено моделирование ряда примеров и выполнена визуализация построенных покрытий.

Ключевые слова: покрытие кругами, наилучшая чебышёвская сеть, чебышёвский центр, зона Дирихле, характерные точки, замкнутая кривая.

УДК: 514.174.3

MSC: 05B40

Поступила в редакцию: 15.04.2016

DOI: 10.20537/vm160212



Реферативные базы данных:


© МИАН, 2024