Аннотация:
Рассматривается аналог метода Стеффенсена для решения нелинейных операторных уравнений. Предложенный метод представляет собой двухшаговый итерационный процесс. Исследуется сходимость рассматриваемого метода, доказывается единственность решения, а также определяется порядок сходимости нового метода. Показывается, что предложенная модификация метода Стеффенсена, не использующая производных оператора, имеет порядок сходимости больше, чем порядок сходимости метода Ньютона, известных обобщений метода хорд или других известных модификаций метода Стеффенсена. Метод прилагается к системам нелинейных уравнений. В качестве примера рассматривается задача о пересечении кривых. Проводятся численные эксперименты на четырех тестовых системах, результаты сравниваются с результатами, полученными методом Ньютона, модифицированным методом Ньютона, а также модификациями метода Вегстейна и метода Эйткена, предложенными автором в предыдущих работах.
Ключевые слова:нелинейные операторные уравнения, метод Стеффенсена, метод Ньютона, задача о пересечении кривых.