RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки // Архив

Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 2017, том 27, выпуск 1, страницы 3–16 (Mi vuu564)

Эта публикация цитируется в 1 статье

МАТЕМАТИКА

Новый подход к многокритериальным задачам при неопределенности

М. И. Высокосa, В. И. Жуковскийb, М. М. Кириченкоb, С. П. Самсоновb

a Государственный гуманитарно-технологический университет, 142611, Россия, г. Орехово-Зуево, ул. Зеленая, 22
b Факультет вычислительной математики и кибернетики, Московский государственный университет им. М.В. Ломоносова, 119991, Россия, г. Москва, ГСП-1, Ленинские горы

Аннотация: Новизна в том, что лицо, принимающее решение (ЛПР) в многокритериальной задаче при неопределенности, стремится не только по возможности увеличить гарантированные значения каждого из своих критериев, но и одновременно уменьшить гарантированные риски, сопровождающие такое увеличение. Предлагаемое исследование выполнено на стыке теории многокритериальных задач (МЗ) и принципа минимаксного сожаления (риска) (ПМС) Сэвиджа–Ниханса: из теории МЗ использованы понятие слабо эффективной оценки и сопровождающая теорема Ю. Б. Гермейера, а из ПМС — оценка значения функции сожаления в качестве риска по Сэвиджу–Нихансу. Рассмотрение ограничено интервальными неопределенностями: о них ЛПР известны лишь границы изменения, а какие-либо вероятностные характеристики отсутствуют (по тем или иным причинам). Введено новое понятие — сильно гарантированного по исходам и рискам решения (СГИР), максимального по Слейтеру; установлено его существование при «привычных» для математического программирования ограничениях (непрерывность критериев, компактность множеств стратегий и неопределенностей). В качестве приложения найден явный вид СГИР в задаче диверсификации вклада по рублевому и валютному депозитам.

Ключевые слова: многокритериальные задачи, сильная гарантия, максимум по слейтеру и парето, минимаксное сожаление, диверсификация вкладов.

УДК: 519.858

MSC: 90C29

Поступила в редакцию: 11.12.2016

DOI: 10.20537/vm170101



Реферативные базы данных:


© МИАН, 2024