Аннотация:
Рассматривается абстрактная задача о достижимости с ограничениями асимптотического характера. Ограничения такого типа могут возникать при ослаблении стандартных (в теории управления) ограничений, таких как фазовые ограничения, краевые и промежуточные условия, которым должны удовлетворять траектории системы. Однако ограничения асимптотического характера могут возникать и изначально, характеризуя тенденции в части реализации желаемого поведения. Так, например, можно говорить о реализации достаточно мощных импульсов управления исчезающе малой длительности. В этом последнем случае трудно говорить об ослаблении каких-либо стандартных ограничений. Так или иначе, мы сталкиваемся с набором ужесточающихся требований, каждому из которых можно сопоставить некоторый аналог области достижимости в теории управления, а точнее образ подмножества пространства обычных решений (управлений) при действии заданного оператора. В работе исследуются вопросы структуры возникающего (как аналог области достижимости) множества притяжения. Схема исследования базируется на применении специального варианта расширения пространства решений, допускающего естественную аналогию с расширением Волмэна, используемого в общей топологии. В этой ситуации естественно полагать, что пространство обычных решений оснащено некоторой топологией (обычно в этом случае исследуется $T_1$-пространство). В этой связи обсуждаются вопросы, связанные с заменой множеств, формирующих ограничения асимптотического характера, замыканиями и внутренностями, а также (частично) вопросы, связанные с представлением внутренности множества допустимых обобщенных элементов, образующего вспомогательное множество притяжения.
Ключевые слова:ограничения асимптотического характера, расширение задачи, топология.