Аннотация:
В данной работе методом вложения строится классификация двуметрических феноменологически симметричных геометрий двух множеств (ФС ГДМ) ранга $(3,2)$ по ранее известной аддитивной двуметрической ФС ГДМ ранга $(2,2)$, задаваемой парой функций $g^1=x+\xi$ и $g^2 = y+\eta$. Суть этого метода состоит в нахождении функций, задающих ФС ГДМ ранга $(3,2)$ по функциям $g^1=x+\xi$ и $g^2 = y+\eta$. При решении этой задачи используем тот факт, что двуметрические ФС ГДМ ранга $(3,2)$ допускают группы преобразований размерности 4, а двуметрические ФС ГДМ ранга $(2,2)$ — размерности $2$. Из этого следует, что компоненты операторов алгебры Ли группы преобразований двуметрической ФС ГДМ ранга $(3,2)$ являются решениями системы восьми линейных дифференциальных уравнений первого порядка от двух переменных. Исследуя эту систему уравнений, приходим к возможным выражениям для систем операторов. Затем из систем операторов выделяем операторы, образующие алгебры Ли. Потом, применяя экспоненциальное отображение, по найденным алгебрам Ли восстанавливаем действия групп Ли. Эти действия как раз и задают двуметрические ФС ГДМ ранга $(3,2)$.
Ключевые слова:феноменологически симметричная геометрия двух множеств, система дифференциальных уравнений, алгебра Ли, группа Ли преобразований.