RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки // Архив

Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 2019, том 29, выпуск 1, страницы 3–18 (Mi vuu661)

МАТЕМАТИКА

Бифуркационное исследование перехода к хаосу в колебательной системе движения пластинки в жидкости

Т.А. Гурина

Московский авиационный институт (национальный исследовательский университет), 125993, Россия, г. Москва, Волоколамское шоссе, 4

Аннотация: Рассматривается модель хаотического движения пластинки в вязкой жидкости, описываемая колебательной системой трех обыкновенных дифференциальных уравнений с квадратичной нелинейностью. В ходе бифуркационного исследования особых точек системы построены карты типов особых точек и найдено уравнение поверхности в пространстве параметров диссипации и циркуляции, на которой происходит бифуркация Андронова–Хопфа рождения предельного цикла. При дальнейшем изменении параметров вблизи поверхности Андронова–Хопфа найдены каскады бифуркаций удвоения периода цикла Фейгенбаума и субгармонические каскады Шарковского, заканчивающиеся рождением цикла периода три. Получены выражения для седловых чисел седлоузла и двух седлофокусов и построены их графики в пространстве параметров. Показано, что в системе реализуются гомоклинические каскады бифуркаций при разрушении гомоклинических траекторий седлофокусов. Существование гомоклинических траекторий седлофокусов доказано численно-аналитическим методом. Графики старшего показателя Ляпунова и бифуркационные диаграммы показывают, что при изменении коэффициентов диссипации система в несколько этапов переходит к хаосу.

Ключевые слова: движение тела в жидкости, особая точка, предельный цикл, гомоклиническая траектория, каскад бифуркаций, аттрактор, хаос, старший показатель Ляпунова.

УДК: 517.938, 531.36, 534.1

MSC: 34C15, 34C23, 34C25

Поступила в редакцию: 17.10.2018

DOI: 10.20537/vm190101



Реферативные базы данных:


© МИАН, 2024