Аннотация:
Рассматривается банахова алгебра $\mathfrak{V}_{\mathbf{n}; p}$ операторов с анизотропно однородными ядрами компактного типа в $L_p$ пространстве на группе $\mathbb{R}^n$. Интерес к операторам из $\mathfrak{V}_{\mathbf{n}; p}$ продиктован их естественной связью с операторами меллиновской свертки, многомерной мультипликативной свертки на группе $\mathbb{R}^n$, а также применимостью при решении задач со сложными особенностями. Описана связь этой алгебры с алгеброй операторов многомерной свертки с компактными коэффициентами посредством изоморфизма подобия. Для операторов из $\mathfrak{V}_{\mathbf{n}; p}$ получен критерий применимости проекционного метода решения операторных уравнений в терминах обратимости некоторого семейства операторов в конусах. Критерий применимости доказывается путем редукции исходного уравнения к уравнению для операторов свертки с компактными коэффициентами. Обоснование применимости проекционного метода основано на существенном использовании новой операторной версии локального принципа А.В. Козака в теории проекционных методов, который в свою очередь является модификацией известного локального метода И.Б. Симоненко в теории фредгольмовости. В работе приводятся иллюстративные примеры уравнений для операторов с анизотропно однородными ядрами компактного типа, в которых для рассматриваемых операторов вычисляется символ, а к уравнениям применяется разработанный проекционный метод.