Аннотация:
Рассматриваются кардинально-значные характеристики $T_1$-пространств и их взаимосвязи. Доказано, что для самосопряженных $T_1$-пространств, то есть пространств, в которых множество замкнуто тогда и только тогда, когда оно компактно, выполняется неравенство $t(X)\leqslant\psi(X)$, где $t(X)$ — теснота, $\psi(X)$ — псевдохарактер пространства $X$. Показано, что в общем случае в компактных $T_1$-пространствах связь между теснотой и псевдохарактером не существует. Приведен пример компактного $T_1$-пространства $X$ такого, что $t(X)>\omega$ и $\psi(X) =\omega$, и приведен пример $T_1$-пространства $X$ такого, что $t(X)=\omega$ и $\psi(X) >\omega$.