RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки // Архив

Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 2019, том 29, выпуск 4, страницы 483–500 (Mi vuu696)

Эта публикация цитируется в 2 статьях

МАТЕМАТИКА

Применение крайних под- и надаргументов, выпуклых и вогнутых оболочек для поиска глобальных экстремумов

О. Е. Галкин, С. Ю. Галкина

Национальный исследовательский университет «Высшая школа экономики», 603155, Россия, г. Нижний Новгород, ул. Большая Печерская, д. 25/12

Аннотация: Для вещественнозначных функций $f$, заданных на подмножествах вещественных линейных пространств, введены понятия крайних подаргументов и крайних надаргументов, а также понятия естественных выпуклой $\check{f}$ и вогнутой $\hat{f}$ оболочек. Показано, что для любой строго выпуклой функции $g$ любая точка глобального максимума функции $f+g$ является крайним подаргументом для функции $f$. Аналогичный результат получен для функций вида $f/v + g$. На основе этих результатов предложен метод, облегчающий поиск глобальных экстремумов функций в некоторых случаях. Доказано, что при определенных условиях функции $f/v+g$ и $\hat{f}/v+g$ имеют одинаковые глобальные максимумы и одинаковые точки глобального максимума. Приведены необходимые и достаточные условия естественности выпуклой оболочки функции. Указано достаточное условие того, что при сужении области определения $f$, значения вогнутой оболочки $\hat{f}$ на суженной области не меняются. Найдены крайние под- и надаргументы для непрерывной нигде не дифференцируемой функции Кобаяши–Грея–Такаги $K(x)$ на отрезке $[0;1]$. Кроме того, на отрезке $[0;1]$ вычислены глобальные экстремумы функции $K(x)/\cos{x}$ и глобальный максимум функции $K(x)-\sqrt{x(1-x)}$. Работа снабжена примерами и проиллюстрирована графиками.

Ключевые слова: недифференцируемая оптимизация, крайние подаргументы (подабсциссы) и крайние надаргументы (надабсциссы) функции, естественные вогнутая и выпуклая оболочки функции, функция Кобаяши–Грея–Такаги.

УДК: 517.518.244, 519.6

MSC: 26A27, 26A30, 26B25, 49M30, 90C26

Поступила в редакцию: 16.09.2019

DOI: 10.20537/vm190402



Реферативные базы данных:


© МИАН, 2024