RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки // Архив

Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 2020, том 30, выпуск 3, страницы 444–467 (Mi vuu735)

Эта публикация цитируется в 3 статьях

МАТЕМАТИКА

Фильтры и сцепленные семейства множеств

А. Г. Ченцовab

a Институт математики и механики им. Н. Н. Красовского УрО РАН, 620108, Россия, г. Екатеринбург, ул. С. Ковалевской, 16
b Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, 620002, Россия, г. Екатеринбург, ул. Мира, 19

Аннотация: Исследуются свойства ультрафильтров (у/ф) и максимальных сцепленных систем (МСС) на широко понимаемом измеримом пространстве (ИП), а также некоторые представления сцепленных (не обязательно максимальных) систем и фильтров на упомянутом ИП. Исследуются условия, обеспечивающие максимальность сцепленных семейств (систем), а также естественные представления для битопологических пространств (БТП), точками которых являются у/ф и МСС. Изучаются оснащения множеств сцепленных семейств и фильтров, отвечающие схемам Волмэна и Стоуна, а также связь данных оснащений (топологиями) с аналогичными оснащениями множеств у/ф и МСС, приводящими к вышеупомянутым БТП. Исследуются свойства определяемых естественным образом произведений сцепленных семейств и МСС на двух (широко понимаемых) ИП. Показано, что МСС на произведении $\pi$-систем (то есть на семействе «измеримых» прямоугольников) исчерпываются произведениями соответствующих МСС на исходных пространствах.

Ключевые слова: максимальная сцепленная система, семейство множеств, топология, ультрафильтр.

УДК: 519.6

MSC: 93C83

Поступила в редакцию: 03.08.2020

DOI: 10.35634/vm200307



Реферативные базы данных:


© МИАН, 2024