RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки // Архив

Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 2021, том 31, выпуск 2, страницы 331–349 (Mi vuu773)

Эта публикация цитируется в 2 статьях

МАТЕМАТИКА

О тотально глобальной разрешимости эволюционного уравнения с неограниченным оператором

А. В. Черновab

a Нижегородский государственный университет, 603950, Россия, г. Нижний Новгород, пр. Гагарина, 23
b Нижегородский государственный технический университет, 603950, Россия, г. Нижний Новгород, ул. Минина, 24

Аннотация: Пусть $X$ — гильбертово пространство, $U$ — банахово пространство, $G\colon X\to X$ — линейный оператор такой, что оператор $B_\lambda=\lambda I-G$ является максимальным монотонным при некотором (произвольно заданном) $\lambda\in\mathbb{R}$. Для задачи Коши, связанной с управляемым полулинейным эволюционным уравнением вида
\begin{gather*} x^\prime(t)=Gx(t)+f\bigl( t,x(t),u(t)\bigr), t\in[0;T]; x(0)=x_0\in X, \end{gather*}
где $u=u(t)\colon[0;T]\to U$ — управление, $x(t)$ — неизвестная функция со значениями в $X$, доказана тотально (по множеству допустимых управлений) глобальная разрешимость при условии глобальной разрешимости задачи Коши для некоторого обыкновенного дифференциального уравнения в пространстве $\mathbb{R}$. Решение $x$ понимается в слабом смысле и ищется в пространстве $\mathbb{C}_w\bigl([0;T];X\bigr)$ слабо непрерывных функций. Фактически, обобщается аналогичный результат, доказанный автором ранее для случая ограниченного оператора $G$. Суть указанного обобщения заключается в том, что постулируемые свойства оператора $B_\lambda$ позволяют построить для него аппроксимации Иосиды линейными ограниченными операторами, распространив необходимые нам оценки с «ограниченного» на «неограниченный» случай. В качестве примеров рассматриваются начально-краевые задачи для уравнения теплопроводности и волнового уравнения.

Ключевые слова: полулинейное эволюционное уравнение в гильбертовом пространстве, максимальный монотонный оператор, тотально глобальная разрешимость.

УДК: 517.957, 517.988, 517.977.56

MSC: 47J05, 47J35, 47N10

Поступила в редакцию: 28.08.2020

DOI: 10.35634/vm210212



Реферативные базы данных:


© МИАН, 2025