RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки // Архив

Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 2021, том 31, выпуск 3, страницы 471–486 (Mi vuu782)

Эта публикация цитируется в 2 статьях

МАТЕМАТИКА

О структуре сингулярного множества решения в одном классе пространственных задач управления по быстродействию

А. А. Успенский, П. Д. Лебедев

Институт математики и механики УрО РАН, 620219, Россия, г. Екатеринбург, ул. С. Ковалевской, 16

Аннотация: Рассмотрен класс задач управления по быстродействию в трехмерном пространстве с шаровой вектограммой скоростей. В качестве целевого множества выбрана гладкая регулярная кривая $\Gamma .$ Выделены псевдовершины — характеристические точки на $\Gamma,$ отвечающие за возникновение сингулярности у функции оптимального результата. Выявлены характерные особенности структуры сингулярного множества, относящегося к семейству биссектрис. Найдено аналитическое представление для крайних точек биссектрисы, соответствующих фиксированной псевдовершине. В качестве иллюстрации эффективности развиваемых методов решения негладких динамических задач приведен пример численно-аналитического построения разрешающих конструкций задачи управления по быстродействию.

Ключевые слова: задача быстродействия, рассеивающая поверхность, биссектриса, псевдовершина, крайняя точка, кривизна, сингулярное множество, репер Френе.

УДК: 517.977

MSC: 35A18, 14H20, 14J17

Поступила в редакцию: 19.07.2021

DOI: 10.35634/vm210309



Реферативные базы данных:


© МИАН, 2024