Аннотация:
Пусть $G=(V,E)$ — граф порядка $p$ и размера $q$, не имеющий изолированных вершин. Биекция $f\colon E\rightarrow\left\{1,2,3,\ldots,q \right\}$ называется локально антимагической маркировкой, если для всех $uv\in E$ имеем $w(u)\neq w(v)$, вес $w(u)=\sum_{e\in E(u)}f(e)$, где $E(u)$ — множество ребер, инцидентных $u$. Граф $G$ является локально антимагическим, если $G$ имеет локально антимагическую маркировку. Локальное антимагическое хроматическое число $\chi_{la}(G)$ определяется как минимальное количество цветов, взятых по всем раскраскам $G$, индуцированным локальными антимагическими маркировками $G$. В данной работе мы полностью определяем локальное антимагическое хроматическое число для коронного произведения графа колеса и пустого графа.