Аннотация:
Модуль $M$ называется псевдополупроективным, если для всех $\alpha,\beta \in \mathrm{End}_R(M)$ таких, что $\mathrm{Im}(\alpha)=\mathrm{Im}(\beta)$, выполнено $\alpha\, \mathrm{End}_R(M)=\beta\, \mathrm{End}_R(M)$. В данной работе мы изучаем некоторые свойства псевдополупроективных модулей и их колец эндоморфизмов. Показано, что кольцо $R$ является полулокальным тогда и только тогда, когда каждый полупримитивный конечно порожденный правый $R$-модуль является псевдополупроективным. Кроме того, мы показываем, что если $M$ — коретрактабельный псевдополупроективный модуль с конечной размерностью пустоты, то $\mathrm{End}_R(M)$ — полулокальное кольцо и каждый максимальный правый идеал $\mathrm{End}_R(M)$ имеет вид $\{s \in \mathrm{End}_R(M) | \mathrm{Im}(s) + \mathrm{Ker}(h)\ne M\}$ для некоторого эндоморфизма $h$ модуля $M$, где $h(M)$ пустотелый.