Аннотация:
В данной статье исследуются специфические особенности соотношений между топологической и алгебраической структурами квазигрупп и луп. Исследуется измеримость подмножеств топологических квазигрупп и луп относительно инвариантных мер. Изучается семейство неизмеримых подмножеств в локально компактных недискретных лупах. Выясняется существование локально $\mu$-нулевых подмножеств, не являющихся $\mu$-нулевыми, в локально компактной левой квазигруппе, не являющейся $\sigma$-компактной. Исследуются факторпространства измеримых пространств на квазигруппах. Более того, изучаются однородные пространства квазигрупп, а также счетная отделимость подмножеств в них.