RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки // Архив

Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 2024, том 34, выпуск 4, страницы 541–562 (Mi vuu905)

МАТЕМАТИКА

О сохранении глобальной разрешимости и оценке решений некоторых управляемых нелинейных уравнений в частных производных второго порядка

А. В. Чернов

Нижегородский государственный университет, 603950, Россия, г. Нижний Новгород, пр-т Гагарина, 23

Аннотация: Пусть $U$ — множество допустимых управлений, $T>0$ и задана шкала банаховых пространств $W[0;\tau]$, $\tau\in(0;T]$, такая, что множество сужений функций из $W=W[0;T]$ на $[0;\tau]$ совпадает с $W[0;\tau]$; $F[.;u]\colon W\to W$ — управляемый вольтерров оператор, $u\in U$. Ранее для операторного уравнения $x=F[x;u]$, $x\in W$, автором была введена система сравнения в форме функционально-интегрального уравнения в пространстве $\mathbf{C}[0;T]$. Было установлено, что для сохранения (относительно малых вариаций правой части) глобальной разрешимости операторного уравнения достаточно сохранения глобальной разрешимости указанной системы сравнения, а также установлены соответствующие достаточные условия. В данной статье рассматриваются дальнейшие примеры приложения этой теории: нелинейное волновое уравнение, сильно нелинейное волновое уравнение, нелинейное уравнение теплопроводности, сильно нелинейное параболическое уравнение.

Ключевые слова: эволюционное вольтеррово уравнение второго рода общего вида, функционально-интегральное уравнение, система сравнения, сохранение глобальной разрешимости, единственность решения, нелинейное волновое уравнение, нелинейное параболическое уравнение

УДК: 517.957, 517.988, 517.977.56

MSC: 47J05, 47J35, 47N10

Поступила в редакцию: 05.09.2024
Принята в печать: 14.10.2024

DOI: 10.35634/vm240405



© МИАН, 2024