Аннотация:
Вводятся в рассмотрение скалярная и векторная производные вектора по другому вектору, которые могут иметь приложение к решению задач механики. Доказывается теорема о представлении скалярной производной в виде комбинации частных производных. Отмечено, что при решении ряда задач механики для упрощения вычислений систему координат выбирают таким образом, чтобы, по крайней мере, направление некоторых векторов совпадало с одной из координатных осей. Это порождает необходимость доказательства двух теорем для двухмерного и одномерного случаев. Доказывается теорема о представлении векторной производной в виде комбинации частных производных. Доказываются две аналогичные теоремы для двухмерного и одномерного случаев. В качестве характерных частных случаев рассматриваются скалярная и векторная производные по радиус-вектору, порождающие соответствующие формализмы, связывающие эти производные с оператором набла. Приводятся примеры приложения полученных результатов к задачам механики.