Аннотация:
Кусочно-линейная аппроксимация гладких функций, заданных на триангуляциях, не обеспечивает сходимости производных, что подтверждается классическим примером Шварца. Тем не менее в плоском случае, если триангуляция является триангуляцией Делоне (то есть выполнено условие пустой сферы), сходимость производных имеет место. В то же время в многомерном случае условия пустой сферы уже недостаточно, поэтому в [1] было сформулировано модифицированное условие пустой сферы, обеспечивающее необходимую аппроксимацию. В этом условии участвует величина $\eta_{k,n}$, исследованию которой посвящена статья.