Аннотация:
Аналитически изучены общие свойства кривых ползучести при произвольном ступенчатом нагружении, порождаемых линейным интегральным соотношением вязкоупругости Больцмана – Вольтерры с произвольной функцией ползучести и обобщающим его нелинейным определяющим соотношением Работнова с двумя материальными функциями, и их зависимость от характеристик материальных функций и параметров программ нагружения. Исследованы скачки деформации и ее скорости в моменты разрыва напряжения, интервалы монотонности и выпуклости, асимптотика кривых ползучести и их отклонения от обычной кривой ползучести при мгновенном нагружении, условия накопления пластической деформации, влияние перестановки ступеней нагружения на асимптотику и остаточную деформацию, скорость рэтчетинга при циклических нагружениях, условия моделирования затухания памяти, асимптотической коммутативности, дрейфа мгновенно-упругой деформации вследствие ползучести.
Обнаруженные свойства теоретических кривых ползучести линейного и нелинейного соотношений сопоставлены друг с другом и с типичными свойствами экспериментальных кривых ползучести вязкоупругопластичных материалов с целью сравнения их областей применимости и возможностей по моделированию различных эффектов при ползучести. Выявлены сферы влияния материальных функций соотношения Работнова, его дополнительные возможности по описанию различных эффектов при ползучести и свойства, унаследованные им от линейного соотношения вязкоупругости.