Аннотация:
Рассматривается проблема моделирования развития особых популяционных процессов, которые включают прохождение эруптивной фазы динамики. Подобные непродолжительные, но ураганные режимы часто связаны с последствиями инвазий нежелательных биологических видов. Процессы при вселении вида часто могут развиваться через отложенную во времени фазу стремительного увеличения его численности. Завершение фазы зависит от многих факторов. Вспышки отдельных биологических видов оказывают столь сильное давление на среду, что достижение ненулевого балансового равновесия проблематично. Подобные явления трактуются нами как переходный процесс с эруптивной фазой к неопределенному заранее состоянию биотической среды. В зависимости от противодействия, что ярко видно на примерах динамики насекомых-вредителей, сценарии подобных явлений могут развиваться различным образом, в том числе с разрушением среды обитания. Разработана новая модель на основе уравнения с отклоняющимся аргументом, где описан вариант развития повторной вспышки катастрофического характера. Сценарий реализуется при возникновении негармонического цикла $N_*(r\tau,t)$, который при специфических условиях не может быть орбитально устойчивым, но становится переходным. Цикл завершается тривиальным значением. Моделируемый сценарий наиболее резкой формы эруптивной фазы заканчивается в вычислительном эксперименте полной гибелью инвазионной популяции, но без образования неограниченной сверху траектории из колебаний. Гибель происходит при разрушении релаксационного цикла экстремальной амплитуды в рассмотренном нами уравнении популяционной вспышки в предыдущей нашей работе [2].
Ключевые слова:уравнения с запаздыванием, чужеродные виды, колебания популяций, переходные режимы, моделирование биологических инвазионных явлений, эруптивная фаза вспышки.