RUS  ENG
Полная версия
ЖУРНАЛЫ // Математическая физика и компьютерное моделирование // Архив

Математическая физика и компьютерное моделирование, 2020, том 23, выпуск 2, страницы 5–21 (Mi vvgum276)

Математика и механика

Исследования в области геометрического анализа в Волгоградском государственном университете

А. А. Клячин, В. А. Клячин

Волгоградский государственный университет

Аннотация: В настоящей статье рассмотрены основные направления исследований по геометрическому анализу, которые проводились и проводятся научной математической школой Волгоградского государственного университета. Вкратце изложены результаты основоположника нучной школы доктора физико-математических наук, профессора Владимира Михайловича Миклюкова и его учеников. Эти результаты касаются решения ряда задач в области квазиконформных плоских отображений и отображений с ограниченным искажением поверхностей и римановых многообразий, теории минимальных поверхностей и поверхностей предписанной средней кривизны, поверхностей нулевой средней кривизны в лоренцевых пространствах, а также задач, связанных с исследованием устойчивости такого рода поверхностей. Кроме этого, отмечены результаты изучения различных классов триангуляций — объекта, возникающего на стыке исследований в области геометрического анализа и вычислительной математики. Также в данном обзоре рассматриваются работы, в которых дано применение метода Фурье разложения решений уравнений Лапласа — Бельтрами и стационарного уравнения Шредингера по собственным функциям соответствующих краевых задач. В частности, приведены результаты по нахождению емкостных характеристик, которые позволили впервые сформулировать и доказать критерии выполнения различных теорем типа Лиувилля и разрешимости краевых задач на модельных и квазимодельных римановых многообразиях. Также указывается роль метода эквивалентных функций при исследовании подобных задач на многообразиях достаточно общего вида.
В данной статье помимо этого дается обзор результатов, касающихся оценок погрешности вычисления интегральных функционалов и сходимости кусочно-полиномиальных решений нелинейных уравнений вариационного типа: уравнения минимальной поверхности, уравнения равновесной капиллярной поверхности и уравнения бигармонических функций.

Ключевые слова: геометрический анализ, минимальные поверхности, емкость, триангуляция, гармонические функции, интегральный функционал.

УДК: 519.632.4
ББК: 22.19

Поступила в редакцию: 17.04.2020

DOI: 10.15688/mpcm.jvolsu.2020.2.1



© МИАН, 2025