Аннотация:
Изучается спектр дифференциального оператора высокого нечетного порядка с периодическими граничными условиями. Асимптотика фундаментальной системы решений дифференциального уравнения, задающего оператор, получена методом последовательных приближений Пикара. С помощью этой фундаментальной системы решений изучены периодические граничные условия. В результате получено уравнение на собственные значения изучаемого дифференциального оператора, которое представляет собой квазиполином. Исследована индикаторная диаграмма этого уравнения, которая представляет собой правильный многоугольник. В каждом из секторов комплексной плоскости, определяемых индикаторной диаграммой, найдена асимптотика собственных значений исследуемого оператора.