Аннотация:
Статья посвящена классической задаче вычислительной геометрии — построению триангуляции заданного конечного множества евклидова пространства. Наиболее часто используемый в настоящее время способ триангуляции был открыт советским геометром Б.Н. Делоне в 30-х годах прошлого века. Этот способ использует специальное условие — условие пустой сферы. В настоящей статье автор предлагает целую серию способов триангуляций фиксированного конечного множества, которые основаны на условии, аналогичном условию Делоне. Только в предлагаемом методе фигурирует не евклидова сфера, а некоторое выпуклое множество с непустой внутренностью.