Аннотация:
Рассмотрены вопросы однозначной разрешимости нелокальной смешанной задачи для нелинейного интегро-дифференциального уравнения псевдопараболического типа третьего порядка. Использован метод ряда Фурье разделения переменных и получена счетная система нелинейных интегральных уравнений (ССНИУ). Для доказательства теоремы об однозначной разрешимости ССНИУ использован метод последовательных приближений в сочетании его с методом сжимающих отображений. Далее показана сходимость ряда Фурье к искомой функции нелокальной смешанной задачи. Также обоснована гладкость решения поставленной задачи. Данная работа является дальнейшим развитием теории интегро-дифференциальных уравнений в частных производных.