Аннотация:
Описан новый метод выбора закона распределения непрерывной случайной величины из заданного множества моделей распределений. Идея метода состоит в непрерывном отображении эмпирического выборочного распределения на эталонную прямую. Для каждого модельного распределения определяют значение функционала, равного среднеквадратической величине ошибок при отображении на эталонную прямую. В результате в качестве наиболее вероятного закона для исходной выборки выбирают тот, для которого соответствующее значение функционала будет минимальным. Приведены примеры реализации метода с помощью статистических испытаний на основе метода Монте-Карло.
Ключевые слова:
случайная величина, закон распределения, идентификация, случайная выборка, статистические испытания методом Монте-Карло, критерий согласия.