RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Математика. Механика. Физика» // Архив

Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ., 2017, том 9, выпуск 4, страницы 19–26 (Mi vyurm351)

Эта публикация цитируется в 2 статьях

Математика

Об определении функции источника в квазилинейных параболических задачах с точечными условиями переопределения

С. Г. Пятков, В. В. Ротко

Югорский государственный университет, г. Ханты-Мансийск, Российская Федерация

Аннотация: Рассматривается вопрос о корректности в пространствах Соболева обратной задачи об определении функции источников в квазилинейной параболической системе второго порядка. Проблемы подобного вида возникают при описании процессов тепломассопереноса, диффузионных процессов, процессов фильтрации и во многих других областях. Главная часть оператора линейна. Неизвестные функции, зависящие от времени, входят в нелинейную правую часть. В том числе в этот класс задач входят и коэффициентные обратные задачи об определении младших коэффициентов в параболическом уравнении или системе. В качестве условий переопределения рассматриваются значения решения в некотором наборе внутренних точек. В качестве краевых условий берутся условия Дирихле или условия задачи с косой производной. Задача рассматривается в ограниченной области с гладкой границей. Однако результаты допускают обобщения и на случай неограниченных областей таких, в которых соответствующие теоремы о разрешимости прямой задачи имеют место. Приведены условия, гарантирующие локальную по времени корректность задачи в классах Соболева. Условия на данные задачи минимальны. Полученные результаты являются точными. Задача сводится к операторному уравнению, существование решения которого доказывается при помощи априорных оценок и теоремы о неподвижной точке. Полученное решение обладает всеми обобщенными производными, входящими в уравнение, принадлежащими пространству $L_p$ с $p>n+2$ и обладает необходимой дополнительной гладкостью в некоторой окрестности точек переопределения.

Ключевые слова: параболическое уравнение, обратная задача, тепломассоперенос, краевая задача, функция источников.

УДК: 517.956

Поступила в редакцию: 21.09.2017

DOI: 10.14529/mmph170403



Реферативные базы данных:


© МИАН, 2024