Аннотация:
Рассматривается уравнение Пуассона в прямоугольной области при смешанных краевых условиях. Его численное решение с помощью итерационных факторизаций и фиктивного продолжения сводится к решению систем линейных алгебраических уравнений с треугольными матрицами, в которых количество ненулевых элементов в каждой строке не более трех. При достаточно малой погрешности аппроксимации решаемой задачи задаваемая относительная погрешность численного метода достигается за несколько итераций. Предлагаемый итерационный метод является почти прямым методом, асимптотически оптимальным по количеству арифметических операций. Разработан итерационный метод для указанной модельной задачи. Эта задача получается в методах фиктивных компонент при решении краевых задач для эллиптических дифференциальных уравнений второго и четвертого порядков в плоских областях. Предложен алгоритм для реализации численного метода с автоматическим выбором итерационных параметров на основе метода скорейшего спуска. Задан критерий остановки итерационного процесса, при достижении заранее задаваемой относительной погрешности решения. Приводятся графические результаты вычислительных экспериментов, подтверждающие асимптотическую оптимальность метода по вычислительным затратам. Построение метода основывается на использовании комплексного анализа.