Аннотация:
Рассматривается задача Дирихле для сингулярно возмущенного, линейного, однородного обыкновенного дифференциального уравнения второго порядка с негладким коэффициентом в действительной оси. Подобные задачи встречаются в физике, технике, механике сплошной среды, гидродинамике и др. Целью исследования является развитие асимптотического метода пограничных функций Вишика–Люстерника–Васильевой–Иманалиева для сингулярно возмущенных дифференциальных уравнений, в случае, когда соответствующее невозмущенное уравнение имеет негладкое решение в рассматриваемой области. По терминологии А.М. Ильина подобные задачи называют бисингулярными. В работе доказывается возможность применения обобщенного метода пограничных функций к построению полного, равномерного асимптотического разложения решения краевой задачи для сингулярно возмущенного, линейного обыкновенного дифференциального уравнения второго порядка со слабой особой точкой или интегрируемой особой точкой. Построенное разложение решения является асимптотическим в смысле Эрдей. При построении равномерного асимптотического разложения решения задачи Дирихле использованы: метод малого параметра, метод математической индукции, классический метод пограничных функций, обобщенный метод пограничных функций и принцип максимума. С помощью принципа максимума получена оценка для остаточного члена асимптотического разложения, т. е. равномерное, полное асимптотическое разложение решения по малому параметру обосновано. Приведен конкретный пример.