Аннотация:
Большинство современных математических методов решения задач естествознания, техники, экономики требуют решения линейных задач большой размерности. Для понижения вычислительной сложности используется специальная структура матриц, соответствующих этим задачам. Блочно-малоранговые матрицы представляют из себя приближение с хорошей точностью плотных матриц в малопараметрическом формате. Блоки малого ранга представляются в виде произведения матриц меньшего размера. Это позволяет значительно экономить машинную память. Методы приближенной факторизации блочно-малоранговых матриц могут быть применены для приближенного решения и предобуславливания систем с плотными матрицами в задачах аэро-, гидро- и электродинамики, а также в прикладной статистике и логистике. Для построения малопараметрических представлений матриц, основанных на малоранговых аппроксимациях отдельных блоков, широко используются алгебраические методы. В данной работе рассмотрен эффективный способ аппроксимации блоков матрицы с положительными элементами матрицей единичного ранга, т. е. в виде произведения столбца на строку. Решение задачи ищется среди допустимых представлений, минимизирующих среднее значение модулей логарифмов отношения приближенного представления элемента к точному значению. Аппроксимирующая задача сведена к задаче линейного программирования, для которой двойственная задача является задачей построения циркуляции минимальной стоимости в полном двудольном графе с пропускными способностями всех дуг равными единице. Для решения полученной задачи предложен алгоритм, имеющий вычислительную сложность не более $O(|I|\cdot|J|\cdot\log(|I|\cdot|J|))$, где $I$ — множество строк в блоке, $J$ — множество столбцов в блоке.