RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Математика. Механика. Физика» // Архив

Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ., 2018, том 10, выпуск 3, страницы 5–11 (Mi vyurm378)

Эта публикация цитируется в 3 статьях

Математика

Об обобщенной краевой задаче для линейных уравнений соболевского типа на графе

А. А. Баязитова

Южно-Уральский государственный университет, г. Челябинск, Российская Федерация

Аннотация: На геометрическом графе рассматривается краевая задача, где помимо условий непрерывности и баланса потоков, впервые вводится условие неподвижности в вершине графа, которое превращается в условие Дирихле, когда граф содержит одно ребро с двумя вершинами. При решении этой задачи сначала рассматривается соответствующая задача Штурма–Лиувилля, а затем полученные результаты применяются для решения задачи Коши двух линейных моделей, заданных на графе: уравнения Хоффа и уравнения Баренблатта–Желтова–Кочиной. Особенностью работы является и тот факт, что на каждом ребре графа задаются уравнения с различными коэффициентами, что вкупе с введением неподвижных вершин графа является впервые рассматриваемой задачей.
Обе модели относятся к уравнениям соболевского типа, изучение которых переживает эпоху своего расцвета. Проведенная редукция этих уравнений к абстрактному уравнению соболевского типа позволила применить метод вырожденных полугрупп операторов. Найдено фазовое пространство решений методом фазового пространства, заключающимся в сведении сингулярного уравнения к определенному на некотором подпространстве исходного пространства регулярному уравнению. Полученные результаты теорем могут быть применены при рассмотрении обратных задач, задач оптимального управления, начально-конечных и многоточечных задач, а также при рассмотрении стохастических уравнений для моделей, заданных на геометрическом графе.

Ключевые слова: модели соболевского типа, уравнения на графе, методфазового пространства.

УДК: 517.9

Поступила в редакцию: 13.06.2018

DOI: 10.14529/mmph180301



Реферативные базы данных:


© МИАН, 2025