RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Математика. Механика. Физика» // Архив

Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ., 2018, том 10, выпуск 3, страницы 12–18 (Mi vyurm379)

Эта публикация цитируется в 2 статьях

Математика

Задача стартового управления и финального наблюдения для системы уравнений Фитц Хью–Нагумо с условием Дирихле–Шоуолтера–Сидорова

О. В. Гаврилова

Южно-Уральский государственный университет, г. Челябинск, Российская Федерация

Аннотация: Исследуется стартовое управление и финальное наблюдение решениями задачи Дирихле–Шоуолтера–Сидорова для вырожденной системы уравнений Фитц Хью–Нагумо. Эта система относится к классу уравнений реакции-диффузии и описывает распространения волн в активных биологических средах, таких как сердечная мышца или мозговая ткань. Система уравнений Фитц Хью–Нагумо является, с одной стороны, развитием известной модели Колмогорова–Петровского–Пискунова, а с другой стороны — упрощением модели Ходжинса–Хаксли. При построении математической модели учитывая, что скорость одной искомой функции системы уравнений Фитц Хью–Нагумо значительно превышает скорость другой, было предложено исследовать вырожденный случай. Изучаемая задача стартового управления и финального наблюдения моделирует ситуацию, когда после кратковременного управляющего воздействие ожидается требуемый результат за некоторый период времени, т. е. в начальный момент времени посылается импульс большой мощности в систему нервов и ожидается требуемое состояние системы через некоторое установленное время. На основе методов Галеркина и компактности доказана теорема существования задачи стартового управления и финального наблюдения в слабом обобщенном случае.

Ключевые слова: полулинейные уравнения соболевского типа, задача Шоуолтера–Сидорова, задача стартового управления и финального наблюдения, система уравнений Фитц Хью–Нагумо, слабое обобщенное решение.

УДК: 517.9

Поступила в редакцию: 11.06.2018

DOI: 10.14529/mmph180302



Реферативные базы данных:


© МИАН, 2025