RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Математика. Механика. Физика» // Архив

Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ., 2018, том 10, выпуск 4, страницы 13–22 (Mi vyurm388)

Математика

Об одном представлении функции Грина задачи Дирихле для бигармонического уравнения в шаре

В. В. Карачик

Южно-Уральский государственный университет, г. Челябинск, Российская Федерация

Аннотация: Аналогично известному элементарному решению уравнения Лапласа вводится элементарное решение бигармонического уравнения. Находится связь этого элементарного решения с элементарным решением уравнения Лапласа. В зависимости от размерности пространства, в котором исследуется краевая задача, через введенное элементарное решение бигармонического уравнения в явном виде определяется некоторая симметричная функция двух переменных. Затем доказывается, что эта функция обладает свойствами функции Грина задачи Дирихле для бигармонического уравнения в единичном шаре. Отдельно исследуются два случая, когда размерность пространства два и когда размерность пространства больше двух. Аналогично функции Грина задачи Дирихле для уравнения Пуассона в шаре находится разложение функции Грина задачи Дирихле для бигармонического уравнения в шаре по полной, ортогональной на единичной сфере системе однородных гармонических многочленов. Это сделано в случае размерности пространства больше четырех. С помощью полученного разложения функции Грина вычисляется интеграл по шару с ядром из функции Грина от однородного гармонического многочлена, умноженного на положительную степень нормы независимой переменной. Полученные результаты согласуются с результатами, известными ранее в этой области.

Ключевые слова: задача Дирихле, бигармоническое уравнение, функция Грина.

УДК: 519.635.1+517.956.223

Поступила в редакцию: 08.06.2018

DOI: 10.14529/mmph180402



Реферативные базы данных:


© МИАН, 2024