RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Математика. Механика. Физика» // Архив

Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ., 2018, том 10, выпуск 4, страницы 41–48 (Mi vyurm391)

Математика

Об одной игровой задаче управления точками вблизи поверхности Луны

В. И. Ухоботов, П. И. Максакова

Челябинский государственный университет, г. Челябинск, Российская Федерация

Аннотация: Рассматривается игровая задача управления, в которой первый игрок управляет материальной точкой переменного состава. Второй игрок управляет точкой, которая может двигаться с ограниченной по величине скоростью. Предполагается, что на материальную точку переменного состава, наряду с управляемой реактивной силой, действует еще постоянная сила, величина которой пропорциональна массе точки. Такая ситуация возникает, например, при рассмотрении движения материальной точки вблизи поверхности Луны, где отсутствует атмосферное сопротивление. Считается, что у точки переменного состава величина относительной скорости отделяющихся частиц топлива является постоянной, а величина тяги ограничена сверху заданным положительным числом. Первый игрок стремится минимизировать в заданный момент времени расстояние между точками, расходуя при этом как можно меньше ресурсов. Сформулированная двухкритериальная задача с помощью весовых коэффициентов сводится к дифференциальной игре, плата в которой является суммой как терминальной, так и интегральной составляющих. С помощью замены переменных задача сводится к однотипной игре, в которой вектограммы игроков являются шарами с радиусами, зависящими от времени. Вычислена функция цены игры и найдены оптимальные управления игроков.

Ключевые слова: управление, дифференциальная игра, плата.

УДК: 517.977

Поступила в редакцию: 14.05.2018

DOI: 10.14529/mmph180405



Реферативные базы данных:


© МИАН, 2024