Аннотация:
Рассматривается смешанная задача с однородными краевыми условиями для нагруженного волнового уравнения, содержащего интеграл по пространственной переменной от натуральной степени модуля решения. Вводится определение слабого решения данной задачи, для которого исследуются вопросы существования и единственности. Для доказательства существования решения используется метод компактности, который формально заключается в том, что при доказательстве сходимости приближенного решения, построенного методом Галеркина, существенно используются вполне непрерывные вложения пространств Соболева. Для использования метода необходимы априорные оценки решения задачи, которые частично установлены в предыдущих работах автора и в предлагаемой статье. Вслед за этим строятся приближенные галеркинские решения. Существование приближенных решений доказывается с помощью теоремы существования для обыкновенных дифференциальных уравнений. После этого производится предельный переход, соответствующий устремлению размерности пространства к бесконечности. Здесь возникает основная трудность применения метода, связанная с нелинейностью уравнения и состоящая в доказательстве компактности семейства приближенных решений. Для этого используются теоремы о компактности вложения пространств Соболева заданного порядка в пространства Соболева меньшего порядка. Единственность слабого решения доказывается стандартной процедурой из теории линейных и нелинейных гиперболических уравнений.
Ключевые слова:нагруженные уравнения в частных производных, априорные оценки, слабое решение, существование и единственность.