RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Математика. Механика. Физика» // Архив

Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ., 2019, том 11, выпуск 2, страницы 5–13 (Mi vyurm406)

Математика

О слабых решениях нагруженного гиперболического уравнения с однородными краевыми условиями

О. Л. Бозиевab

a Институт информатики и проблем регионального управления Кабардино-Балкарского научного центра РАН, г. Нальчик, Российская Федерация
b Кабардино-Балкарский государственный университет им. Х.М. Бербекова, г. Нальчик, Российская Федерация

Аннотация: Рассматривается смешанная задача с однородными краевыми условиями для нагруженного волнового уравнения, содержащего интеграл по пространственной переменной от натуральной степени модуля решения. Вводится определение слабого решения данной задачи, для которого исследуются вопросы существования и единственности. Для доказательства существования решения используется метод компактности, который формально заключается в том, что при доказательстве сходимости приближенного решения, построенного методом Галеркина, существенно используются вполне непрерывные вложения пространств Соболева. Для использования метода необходимы априорные оценки решения задачи, которые частично установлены в предыдущих работах автора и в предлагаемой статье. Вслед за этим строятся приближенные галеркинские решения. Существование приближенных решений доказывается с помощью теоремы существования для обыкновенных дифференциальных уравнений. После этого производится предельный переход, соответствующий устремлению размерности пространства к бесконечности. Здесь возникает основная трудность применения метода, связанная с нелинейностью уравнения и состоящая в доказательстве компактности семейства приближенных решений. Для этого используются теоремы о компактности вложения пространств Соболева заданного порядка в пространства Соболева меньшего порядка. Единственность слабого решения доказывается стандартной процедурой из теории линейных и нелинейных гиперболических уравнений.

Ключевые слова: нагруженные уравнения в частных производных, априорные оценки, слабое решение, существование и единственность.

УДК: 517.956.35

Поступила в редакцию: 24.01.2019

DOI: 10.14529/mmph190201



Реферативные базы данных:


© МИАН, 2024