Аннотация:
Рассматриваются собственные колебания упругого стержня, находящегося в поле центробежных сил инерции и опирающегося на вязкоупругий демпфер. Эта математическая модель с достаточной для инженеров достоверностью описывает динамические процессы вращающихся лопаток турбин, рабочей части иглофрезы и прочих подобных механизмов. Постановка задачи о собственных значениях базируется на вариационном принципе и ставится в комплексной форме. Такой подход позволяет оценивать демпфирующую способность стержня через мнимую часть собственной частоты (коэффициент демпфирования), а также легко усложнять и варьировать параметры конструкции. Например, рассматривать стержень с переменным поперечным сечением или переменной плотностью по длине. Достоверность результатов методики в статье доказана путем сравнения их с имеющимися в литературе данными. Основным результатом следует считать, что для структурно-неоднородных конструкций (т.е. конструкций, состоящих из упругих и вязкоупругих элементов) можно при неизменной реологии демпфера увеличить интенсивность гашения колебаний за счет рационального выбора их геометрических или упругих параметров. Причем максимум поглощаемой энергии как в первом, так и во втором случае, определяют совместно коэффициенты демпфирования двух низших форм колебаний. Из принципа minmax следует, что в качестве глобального коэффициента демпфирования выступают поочередно коэффициенты демпфирования 1-й и 2-й форм колебаний. В точке экстремума наблюдается максимальное взаимодействие 2-х низших форм колебаний, в результате чего и наблюдается этот синергетический эффект. Очевидно, что в случае вынужденных колебаний подобранные параметры механической системы обеспечат минимальные резонансные амплитуды.
Ключевые слова:стержень, колебания, коэффициент демпфирования, вязкоупругость, собственные частоты, демпфер.