Аннотация:
Для качественного исследования краевых задач в тех или иных классах функций комплексного переменного существенное значение имеет проблема разрешимости этих задач в явном виде, т. е. возможности построения общих решений рассматриваемых задач, используя лишь формулы решения классических скалярных краевых задач Римана или Гильберта для аналитических функций, а также решая конечное число систем линейных алгебраических уравнений и/или линейных дифференциальных уравнений, для которых матрица системы может быть выписана в квадратурах. В представленной статье рассматривается на комплексной плоскости одно семейство дифференциальных уравнений с частными производными второго порядка с коэффициентом при искомой функции, зависящим от натурального параметра $n$, а решения которого принято называть обобщенными аналитическими функциями порядка $n$. Кроме того, в статье сформулирована общая постановка краевой задачи типа Неймана для обобщенных аналитических функций произвольного порядка $n$, а также получен явный метод решения поставленной краевой задачи в классе обобщенных аналитических функций первого порядка в случае, когда носителем краевых условий является единичная окружность. Установлено, что в рассматриваемом случае решение задачи типа Неймана для обобщенных аналитических функций первого порядка редуцируется к последовательному решению простейшей скалярной задачи Римана в классе ограниченных на бесконечности кусочно аналитических функций и одного линейного дифференциального уравнения Эйлера второго порядка, т. е. искомая задача в рассматриваемом случае допускает полное описание картины ее разрешимости. Полученные общие результаты иллюстрируются на конкретном примере.
Ключевые слова:краевая задача, задача типа Неймана, явное решение, обобщенная аналитическая функция, дифференциальное уравнение Эйлера, единичная окружность.